منابع مشابه
Cauchy Integral Theorem
where we use the notation dxI for (1.4) dxI = dxi1 ∧ dxi2 ∧ ... ∧ dxik for I = {i1, i2, ..., ik} with i1 < i2 < ... < ik. So ΩX is a free module over C ∞(X) generated by dxI . Obviously, Ω k X = 0 for k > n and ⊕ΩX is a graded ring (noncommutative without multiplicative identity) with multiplication defined by the wedge product (1.5) ∧ : (ω1, ω2)→ ω1 ∧ ω2. Note that (1.6) ω1 ∧ ω2 = (−1)12ω2 ∧ ω...
متن کاملIntegral Grothendieck-riemann-roch Theorem
in the Chow ring with rational coefficients CH(S)Q = ⊕nCH (S)Q. Here ch is the Chern character and Td(TX), Td(TS) stand for the Todd power series evaluated at the Chern classes of the tangent bundle of X, respectively S. Since both sides of (1.1) take values in CH(S)Q := CH (S)⊗Q, only information modulo torsion about the Chern classes of f∗[F ] can be obtained from this identity. The goal of o...
متن کاملAn integral representation theorem of g-expectations
There are two classes of nonlinear expectations, one is the Choquet expectation given by Choquet (1955), the other is the Peng’s g-expectation given by Peng (1997) via backward differential equations (BSDE). Recently, Peng raised the following question: can a g-expectation be represented by a Choquet expectation? In this paper, we provide a necessary and sufficient condition on g-expectations u...
متن کاملAn Integral Geometric Theorem for Simple Valuations
We prove a translative mean value formula for simple valuations, taken at the intersection of a fixed and a translated convex body. MSC 2000: 52A22 (primary); 52B45 (secondary)
متن کاملA bifurcation theorem for noncoercive integral functionals
In this paper we study the existence of critical points for noncoercive functionals, whose principal part has a degenerate coerciveness. A bifurcation result at zero for the associated differential operator is established.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Inventiones mathematicae
سال: 2007
ISSN: 0020-9910,1432-1297
DOI: 10.1007/s00222-007-0067-9